...

自然对数 双曲函数

1649年,Alphonse Antonio de Sarasa(英语:Alphonse Antonio de Sarasa)将双曲线下的面积解释为对数。大约1665年,伊萨克·牛顿推广了二项式定理,

...

微分流行切线、切面的意义

微分流行用于定义闵氏几何、四维空间的基础。实际上是小范围的映射,以及小范围相交之后的一一映射(单射、满射、光滑、其逆光滑)。用人类语言描述就是有一张膜,像网一样撒开,光滑连续没有漏洞残破,可横向无限延

...

线元——余切向量

余切向量是切向量的对偶概念。流形M在点P处的切向量全体构成切空间,切空间的 对偶空间就是余切空间。 余切向量就是余切空间中的向量。 粗略的说,余切向量就是一阶微分的线性组合。

...

高等数学、线性代数、大学物理几个启蒙的例子

用正N边形画圆。微分、积分 用高铁的即时速度(瞬时速度)来积分预估总距离和总耗时。微分、积分 直角坐标系下函数图像与x轴所夹的图形面积。积分 勾股定理线元决定的欧式几何,连接一个曲线上的点,将线段模拟

...

你知道除法的余数有多重要吗?

除法,是一种快速的减法,对应,乘法,是一种快速的加法。这在辗转相减、辗转相除求最大公约数中体现的淋漓尽致。注意我用逗号隔开的表达方式,是一种用心和智慧。 除法可以用分数表示、可以用小数表示。那么为什么

...

洛仑兹变换是线性的

凭借经验得出假设,然后推理论证得到定理,之后应用定理获得现实的证明。然后就可以基于此进行推广。

...

线性代数对角线以及横向相加才对应了平面直角坐标系矢量相加的本性

1.线性代数对角线 2.以及将向量竖排显示成矩阵的横向相加 才对应了平面直角坐标系矢量相加的本性, 这是最基础的法则,像围棋,落子于交点,两口气能活,然后就繁复出了众多原理 行列式也是对角线很重要