爱因斯坦质能方程

小圆滚滚

1 质能方程的完整版

质能方程的完整版是:

$$E^2 = (pc)^2 + (m_0c^2)^2$$

其中:

- E 是总能量
- p 是动量
- c 是光速
- m₀ 是静止质量

这个方程是爱因斯坦狭义相对论的一个重要结果,它表明一个物体的总能量是其静止能量和动能之和。当物体静止时,即 p=0,方程简化为著名的 $E=m_0c^2$ 。

2 它是如何推导出来的

下面给出一种"从狭义相对论运动学 \rightarrow 四维动量 \rightarrow 能量-动量关系"的标准推导路线,完全避开具体力学定律,只用到:

- 1. 洛伦兹变换
- 2. 四维矢量内积是洛伦兹不变量
- 3. 质点四维动量的定义

_

2.1 一、预备知识

1. **时空四维矢量** 取自然单位 c=1, 事件坐标写为

$$x^{\mu} = (t, x, y, z) \equiv (t, \vec{x}).$$

2. **洛伦兹不变量** 任意四矢 A^{\mu} 的"模方"

$$A_{\mu}A^{\mu} = A_0^2 - \vec{A}^2$$

在所有惯性系中数值相同。

3. **质点四维速度** 对静止质量 $m_0>0$ 的质点,选其**固有时** τ 作参数($\mathrm{d}\tau=\mathrm{d}t/\gamma$),定义 $u^\mu=\frac{\mathrm{d}x^\mu}{\mathrm{d}\tau}.$

直接计算可得

$$u^{\mu} = \gamma(1, \vec{v}), \qquad \gamma = (1 - v^2)^{-1/2}.$$

它满足

2.2 二、四维动量及其分解

直接把四维速度乘上静止质量 m_0 (洛伦兹标量),得到**四维动量**

$$p^{\mu} = m_0 u^{\mu} = m_0 \gamma(1, \vec{v}).$$

把它按时间-空间分开写:

$$p^0 = m_0 \gamma, \qquad \vec{p} = m_0 \gamma \vec{v}.$$

2.3 三、计算不变量 $p_{\mu}p^{\mu}$

利用"模方是标量"这一事实,可在**任何惯性系**算。挑一个最方便的——**质点瞬时静止系**。在该系里 $\vec{v} = 0, \gamma = 1$,于是

$$p_{\text{rest.}}^{\mu} = (m_0, \vec{0}) \quad \Rightarrow \quad p_{\mu} p^{\mu} = (p^0)^2 - \vec{p}^2 = m_0^2.$$

因为 $p_{\mu}p^{\mu}$ 是洛伦兹不变量,所以在**任意**惯性系都必须有

$$p_{\mu}p^{\mu} = (p^0)^2 - \vec{p}^2 = m_0^2. \tag{1}$$

2.4 四、把 p^0 认成"总能量 / c"

回到普通单位 (把c显式写出),只需做替换

$$p^0 \to \frac{E}{c}, \qquad \vec{p} \to \vec{p}, \qquad m_0 \to m_0.$$

代入 (1) 式:

$$\left(\frac{E}{c}\right)^2 - \vec{p}^2 = (m_0 c)^2.$$

两边乘 c^2 即得**完整质能方程**

$$E^2 = (pc)^2 + (m_0c^2)^2.$$

2.5 五、常见特例

1. **粒子静止** (p = 0)

$$E=m_0c^2.$$

2. **无质量粒子** $(m_0 = 0)$

$$E = pc$$

正是光子能量-动量关系。

2.6 六、小结(一句话)

"四维动量的模方是洛伦兹不变量"这一纯粹运动学事实,直接给出了能量、动量、静止质量三者间的**恒等关系**,无需借助任何具体力学定律——这就是完整版质能方程 $E^2 = (pc)^2 + (m_0c^2)^2$ 的来历。

3 如果按照爱因斯坦的推导,会是怎样

3.1 爱因斯坦1905年原始推导(LaTeX版)

以下重现爱因斯坦1905年9月论文《物体的惯性同它所含的能量有关吗?》的完整推导,采用现代LaTeX符号系统:

3.1.1 一、实验设置

孤立盒子: 长度L, 质量M, 静止于惯性系S

左端光源同时发射双向电磁波,每束能量: $\frac{E}{2}$ (2)

3.1.2 二、辐射的惯性

由麦克斯韦-坡印廷公式:

 $p = \frac{E}{c} \quad \Rightarrow \quad \Delta p_{\mathcal{H}} = \frac{E}{2c}(+\hat{x}) + \frac{E}{2c}(-\hat{x}) = 0 \tag{3}$

3.1.3 三、等效质量假设

设能量E对应等效质量 μ :

$$E = \mu c^2 \tag{4}$$

发射后盒子质量分布:

$$M_{\pm} = M - \mu, \quad M_{\pm} = M \quad (\mathbf{W} \mathbf{\psi} \hat{\mathbf{n}}) \tag{5}$$

3.1.4 四、质心位移计算

内部质心移动量:

$$\Delta x_{\rm int} = \frac{\mu L}{M} \tag{6}$$

盒子反向补偿位移:

$$\Delta x_{\rm box} = -\frac{\mu L}{M} \tag{7}$$

持续时间:

$$\Delta t = \frac{L}{c} \tag{8}$$

3.1.5 五、动量守恒验证

盒子获得速度:

$$v = \frac{\Delta x_{\text{box}}}{\Delta t} = -\frac{\mu c}{M} \tag{9}$$

系统总动量:

$$P_{\stackrel{\sim}{\bowtie}} = Mv + \frac{E}{c} = -\mu c + \mu c = 0 \qquad (守恒)$$
 (10)

3.1.6 六、最终结论

将 $\mu = E/c^2$ 代入(9)得:

$$\Delta E = \Delta m \cdot c^2$$

3.1.7 七、推导逻辑树

注: 此推导仅适用于静止系统,完整相对论性能量-动量关系需通过四维矢量得到:

$$E^2 = (pc)^2 + (m_0c^2)^2$$

4 网页版

爱因斯坦 1905 年 9 月那篇 3 页小论文《Does the inertia of a body depend upon its energy-content?》没有用到四维矢量,甚至连"光子"一词都还没出现(光量子概念同年 3 月刚提)。他走了一条"最平易"的路线——**麦克斯韦-坡印廷公式 + 相对论性 Doppler 效应 + 能量守恒**——就得到了今天写在教科书里的 $\Delta E = \Delta m \cdot c^2$ 下面把原文思路按现代符号完整重演一遍,让你体会"1905版"味道。

4.1 设定:一只"发光盒子"

- 1. 取一长 L 、质量 M 的孤立空心盒子,静止在惯性系 S。
- 2. 在盒子的左端 A 有一个"光源", 右端 B 有一个完全吸收体。
- 3. 某时刻光源同时向 $\pm x$ 方向各发出一束平面电磁波,每束能量各为 $\frac{1}{2}$ E(原文用 L/2 表示能量,这里直接写 E/2)。

对盒子来说,两束光总能量

$$E_{tot} = E$$
,

总动量

 $p_{tot} = 0$ (因为左右对称)。

4.2 用"能量-动量关系"算光的惯性

爱因斯坦当时没有 p=E/c 这条公式,他直接引用麦克斯韦-坡印廷结果:

平面电磁波的能量流密度 $S = E \times H$,

动量密度 $g = S/c^2$ 。

积分即得

一束能量为 ε 的平面波,携带动量大小

$$p = \epsilon / c_{\circ}$$
 (1)

于是两束光各带

$$p = +E/(2c), p = -E/(2c).$$

4.3 能量守恒 + 动量守恒□盒子必须反冲

系统初始总动量为 0。

发光瞬间,光带走±E/(2c),所以盒子必须获得

$$P_{box} = -(p_1 + p_2) = 0$$

——等等,这样盒子不会动?

关键: **两束光并非"同时"到达对面**。

因为光速有限,向右的光要先走 L 距离才被吸收,向左的光同样要走 L。

在这 $\Delta t = L/c$ 的间隔里, 左端质量已减少, 右端尚未增加, 盒子重心会移动?

爱因斯坦换了一个更简单的视角——**只看"发光前"与"被完全吸收后"两个平衡态**,中间过程不管。

他采用**能量守恒**:

- 发光前: 盒子能量 U , 静止。
- 吸收后: 光能 E 已 "存入"右端,盒子能量变为 U = U E + E = U , 但 "能量 E 已从左侧搬到右侧"。

4.4 用**动量守恒**算反冲速度

发光瞬间,光带走总动量 0,盒子动量仍为 0;

吸收瞬间,光把全部动量0交回盒子,于是盒子再次静止。

——似乎盒子根本没动?

问题出在哪: **光把"能量"搬过去的同时,也把"惯性"搬过去了**。

爱因斯坦的洞见:

"如果能量有惯性,那么左侧失去能量 $\Delta U = -E$ 就应等价于失去质量 Δm ;

右侧得到 +E 就得到 + Δm 。"

于是盒子**内部质心**发生微移,而系统总质心(盒子+场)必须保持原位——这只能意味着**整个盒子要反向移动一小段距离**,以补偿内部质心位移。

具体计算:

设能量 E 对应"等效质量" μ ,即

$$E = \mu c^2 \, . \tag{2}$$

发光后左侧质量变为 $M - \mu$, 右侧等待吸收体质量仍为 M;

内部质心相对盒子移动

$$\Delta x_{int} = (\mu \cdot L)/M_{\circ}$$

为让**系统总质心**不动,盒子本身必须反向移动

$$\Delta x_{box} = -\Delta x_{int} = -\mu L/M$$
.

这段时间 $\Delta t \approx L/c$, 于是盒子速度

$$v = \Delta x_{box}/\Delta t = -\mu L/M \cdot c/L = -\mu c/M. \tag{3}$$

4.5 动量守恒检验

盒子动量

$$P_{box} = Mv = -\mu c_{\circ}$$

光在发光瞬间带走总动量 0, 但**两束光分别被两端吸收时**, 把动量

+E/(2c) 和 -E/(2c)

交回盒子;

因为两事件空间分离 L, 时间差 $\Delta t = L/c$, 盒子获得的**净冲量**恰好

$$\Delta P = 0 - (-\mu c) = +\mu c \, .$$

于是发光前 0 → 吸收后 0, **全过程动量守恒成立**。

(爱因斯坦原文用"重心速度"论证,逻辑等价。)

4.6 把 μ 代掉□得到 $\Delta E = \Delta m \cdot c^2$

由 (2) $\mu = E/c^2$ 代入 (3) 得

v = -E/(Mc).

——盒子速度只与"搬运的能量 E"有关,与距离 L 无关。

再把"能量 E 被搬过去"看成**盒子内部能量分布改变**,而不问中间媒介是光还是别的,结论普遍成立:

任何能量 E 若从一处转移到另一处,就同时把惯性 $\mu = E/c^2$ 带走。

换句话说:

"能量增加 E" \equiv "惯性质量增加 E/c^2 "。

于是写出今天标志性的

$$\Delta E = \Delta m \cdot c^2 \, . \tag{4}$$

4.7 爱因斯坦原文收尾一句话

"If the theory corresponds to the facts, the radiation transfers the inertia $\Delta m = E/c^2$ between the emitting and the absorbing body."

——**辐射把惯性 E/c² 从发射体带给了吸收体**。

4.8 与"完整版" E²=(pc)²+(m□c²)² 的关系

1905年这篇只讨论了**静止物体**内部能量增减导致的质量变化,所以得到的是(4)式——今天叫**静止能量**关系。

至于"粒子有动量时总能量怎么算",是 1906-1907 年普朗克、爱因斯坦把洛伦兹变换用到动力学后才完成的,最终由闵可夫斯基 1908 写成四维形式,得到我们前面用四矢"一键导出"的

$$E^2 = (pc)^2 + (m c^2)^2$$
.

因此

- **1905 路线** → 先发现"能量即质量", 给出 $E = m c^2$;
- **1906-1908 路线** → 再发现"动量也参与",给出二次型关系。

两条路殊途同归,却各自体现了爱因斯坦最拿手的"思想实验+守恒律"风格。